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Commonly used methods for estimating parameters of a spatial
dynamic panel data model include the two-stage least squares,
quasi-maximum likelihood, and generalized moments. In this
paper, we present an approach that uses the eigenvalues and
eigenvectors of a spatial weight matrix to directly construct con-
sistent least-squares estimators of parameters of a general spatial
dynamic panel data model. The proposed methodology is con-
ceptually simple and efficient and can be easily implemented.
We show that the proposed parameter estimators are consis-
tent and asymptotically normally distributed under mild condi-
tions. We demonstrate the superior performance of our approach
via extensive simulation studies. We also provide a real data
example.

spatial dynamic panel data model | spatial–temporal model |
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Spatiotemporal data are common in many areas of science
and engineering such as environmental science, epidemiol-

ogy, economics, and sociology. For illustration, data derived from
neighboring geographical locations can exhibit spatial depen-
dence, as can data generated by adjacent nodes of a social
network. Modeling such data is necessary but challenging. For
example, urban crime count data exhibit clear spatiotemporal
patterns (1), and important economic variables across space may
be found that account for the concentrations of violence move-
ment. If we can effectively model where and when crime occurs,
we can launch better preventative measures. As another exam-
ple, data collected from Sina Weibo, the largest Twitter-like
social network in China, can be better modeled if one lever-
ages user-specific covariates and information about the network
structure; good modeling allows us to detect key players in the
network, and this knowledge can be used to improve targeted
marketing (2). More examples can be found in the literature;
e.g., ref. 3 used a time–space dynamic panel data model with
spatial moving average errors to study the employment levels
across 255 NUTS regions of the European Union over the period
2001 to 2012 in an application in geographical economics; ref. 4
introduced a spatiotemporal model that uses information from
nearby, recently sold properties in predicting the value of a given
property.

In the following, we use urban crime count data for illustra-
tion of the above examples. The dataset was previously analyzed
in ref. 1 by using a count model combined with a latent Gauss-
ian spatiotemporal state process. It contains the monthly counts
of crimes from January 2008 to December 2013 (72 mo) in the
138 census tracts in Pittsburgh, PA. These counts account for
Part I and Part II offences, as defined in the Uniform Crime
Reporting (UCR) handbook of the US Department of Justice
(ref. 5, p. 8). Part I offences consisted of 8 categories of serious
felonies and Part II offences were classified into 21 categories
of nonserious felonies and misdemeanors. Since the numbers
of Part I offences and Part II offences are integers, we apply
a logarithmic transformation to them. The transformed data
are displayed in Fig. 1 A and B, respectively. It is interesting

to know whether Part II offences contribute to the modeling
of Part I offences. To account for heterogeneity across census
tracts, following ref. 1, the following data have also been col-
lected from the Census 2000 (US Census Bureau and Social
Explorer tables in ref. 1) on the 15 socioeconomic variables,
which are total population (Tp), population density per square
mile (Pd), median income (Mi), dropout rate age 16 to 19 y
(Dra), civilian unemployment rate (Cur), poverty rate (Pvr), per-
centage of total population under 18 y (U18), group quarter
proportion (Gqp), percentage of total population that is African-
American (Paa), percentage of population with less than a
high-school degree (Hdl), percentage of population with a bach-
elor’s degree or higher (Bdh), rental housing units as percentage
of occupied housing units (Rhu), percentage of households hav-
ing been in the same house for more than 1 y (Sh1), percentage
of female-headed households (Fhh), and housing units vacancy
rate (Hvr).

Note that there are two types of data above: One type of data
is not dependent on time while another type of data is time
dependent. As the locations of census tracts may play roles in
the modeling, the neighboring relationships can be given via an
adjacency matrix A = (aij )138×138, which was chosen in ref. 1 as
the queen contiguity matrix such that aii = 0, aij = aji , j 6= i , and
aij = 1 if the borders of tract i and j share at least one common
point and aij = 0 otherwise. As Part I offences at the time t may
be dependent on the neighboring Part I offences via a weight
matrix built on the adjacency matrix, the previous Part I offences,
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Fig. 1. (A and B) Time averages of log(1 + c)-transformed Part I (A) and Part II (B) crimes in the 138 Pittsburgh census tracts.

Part II offences at t , the 15 socioeconomic variables, seasonal-
ity, etc., it motivates us to consider a general spatial dynamic
panel data model that is conceptually simple, efficient, and easily
implemented for analyzing spatiotemporal data.

This general spatial dynamic panel data (GSDPD) model has
the form

yt = ρWnyt +α1n +Zγ0 + WnZβ0 +Ztγ+ WnZtβ+ εt ,

t = 1, . . . ,T , [1]

where n is the size of spatial sites; 1n = (1, . . . , 1)> is an n-
dimensional vector; yt = (y1t , . . . , ynt)

> is an n-dimensional
vector of observations at time t ; Wn is an n ×n spatial weight
matrix; Z is an n × d0 design matrix; Zt is an n × d1 time-
dependent matrix of predictor variables; εt = (ε1t , . . . , εnt)

>,
εit , i = 1, . . . ,n, t = 1, . . . ,T are independently and identically
distributed (iid) random errors with zero means, variance σ2,
and finite fourth moment µ4; ρ and α are unknown param-
eters; and γ0, γ, β0, and β are unknown parameter vectors.
The construction of the model Eq. 1 is displayed in Fig. 2. The
above GSDPD model includes the classical spatial autoregres-
sive (SAR) model as its special case, which is Eq. 1 with T = 1,
γ0 =β0 = 0, and γ=β= 0. For this SAR model, the ordinary
least-squares estimation is inconsistent in general, because the
spatially lagged dependent variable is typically correlated with
the error term (6, 7). To attain the consistent estimation, ref.
7 proposed maximum-likelihood (ML) estimation, combined
with a Newton–Raphson procedure to optimize the objective, to
estimate ρ.

A more general special case of the GSDPD model is the gen-
eral first-order serial and spatial autoregressive distributed lag
model considered in ref. 8, which can be represented by Eq. 1
with α= 0, γ0 =β0 = 0, and Zt = (yt−1,xt ,xt−1)n×3 and has
been widely used in practice. The ML method was employed
to achieve the consistent estimation in ref. 8. Another spatial
dynamic panel data (SDPD) model with fixed effects considered
in ref. 9 is also a special case of the GSDPD model with α= 0,
β0 = 0, β= (ρ1, 0>d1−1)>, d0 =n , Z = In , and Zt = (yt−1,Xt),
where In denotes the n ×n identity matrix. That work also inves-
tigated asymptotic properties of the quasi–maximum-likelihood
(QML) estimator of the model.

Computing complexity is high for both ML and QMLE since
they both need to compute the determinant of the Jacobian
matrix which is a nonlinear function of ρ and hence the compu-
tation time increases as n increases. This motivated ref. 10 to
propose the generalized method of moments (GMM) to esti-
mate the SDPD model. For the same reason, to estimate the
spatial Durbin dynamic panel model, another special case of the

SDPD, ref. 11 proposed using a combination of two-stage least-
squares (2SLS) and QML approaches. We remark that moment
functions and instrumental variables need be selected to use the
GMM approach and to compute the 2SLS estimates.

In this paper, we propose an approach that targets directly
estimation of a GSDPD model by ordinary least squares (OLS),
which require neither an iterative algorithm nor having to
select moment functions and instrumental variables (IV). To
obtain the consistent estimation, we need only to use the
eigendecomposition of a spatial weight matrix. There are sev-
eral major innovations in our approach. First, the proposed
estimation is

√
n(1 + d1)T consistent and asymptotically nor-

mally distributed. Second, the proposed estimates have explicit
forms and do not need to be iteratively solved, and thus
our method is an easy and efficient one. Third, as the spa-
tial weight matrix is conventionally sparse, computation of its
eigenvalues and eigenvectors via the Arnoldi and Lanczos algo-
rithms is very fast. Finally, the proposed method can also
be applied to select a model from a broader set of models,
which, as demonstrated in our simulation studies, outperforms
the model selection methods (12) based on the well-known
instrumental variables (13) in terms of estimation accuracy and
computational speed.

Our main contributions are summarized as follows:

1) Development of a GSDPD model that accounts for many of
the classical models as its special cases. The optimal model
can be obtained by performing model selection.

Fig. 2. The construction of the model Eq. 1.
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2) An eigendecomposition-based least-squares (EDLS) esti-
mation method for the general spatial dynamic panel data
model in terms of the eigendecomposition of a conventional
spatial weight matrix.

3) A model selection method on the general spatial dynamic
panel data model based on EDLS.

4) Theoretical analysis of the limiting behavior of both the
estimation of EDLS and the proposed model selection
method.

5) A real data analysis using the developed method.

Expanded Eigendecomposition-Based Least-Squares
Estimation Procedure
The Methodology. Throughout this paper, we consider the sce-
nario where all diagonal elements of Wn are zeros. Denote
the eigenvalues and eigenvectors of W>n by λi,n and ηi,n ; i.e.,
W>n ηi,n =λi,nηi,n , i = 1, . . . ,n . We further restrict that λi,n ,
i = 1, . . . ,n , are real and are not all equal. This restriction can
be justified by the following two common settings. In the first set-
ting, Wn is a symmetric matrix. In the second setting, Wn =DA
where one of A and D is a symmetric matrix and the other is a
positive definite matrix.

Denote the true values of the regression coefficients of the
model Eq. 1 as θo = (ρo ,αo , (γo

0)>, (βo
0)>, (γo)>, (βo)>)>=

(θo1 , . . . , θop )>, where p = 2 + 2d0 + 2d1. Throughout the rest of
this paper, the superscript “o” is suppressed to simplify notation.
We propose the following expanded eigendecomposition-based
least-squares estimation (EDLS+) procedure:
Step 1. Left multiply both sides of the model Eq. 1 by η>i,n ; i.e.,

η>i,nyt=
1

1− ρλi,n

[
η>i,n1nα+η>i,nZ (γ0 +λi,nβ0)

+ η>i,nZt(γ+λi,nβ) +η>i,nεt
]
. [2]

Denote y∗i,t =η>i,nyt , z∗i,t = (1,η>i,nZt)
>, β∗i =

(
η>i,n1nα +

η>i,nZ (γ0 +λi,nβ0), (γ+λi,nβ)>
)>/(1− ρλi,n), and ε∗i,t =

η>i,nεt/(1− ρλi,n). Eq. 2 can be written as

y∗i,t = (z∗i,t)
>β∗i + ε∗i,t , i = 1, . . . ,n, t = 1, . . . ,T , [3]

where z∗i,t = (zi,t,1, . . . , zi,t,d1+1)> with zi,t,1 = 1. By Eq. 3,
compute the least-squares (LS) estimate of β∗i as follows:

β̂
∗
i =

(
T∑

t=1

z∗i,t(z
∗
i,t)
>

)−1 T∑
t=1

z∗i,ty
∗
i,t . [4]

Step 2. Find the Cholesky decomposition Γi , a lower triangu-
lar matrix, such that Γ>i Γi = 1

T

∑T
t=1 z

∗
i,t(z

∗
i,t)
>. Define ς i,T =√

T (1− ρλi,n)Γi(β̂
∗
i −β∗i ). Thus,

Γi β̂
∗
i = ρλi,nΓi β̂

∗
i + (1− ρλi,n)Γiβ

∗
i +

ς i,T√
T

=Uiθ
o +

ς i,T√
T

, i = 1, . . . ,n, [5]

where Ui =Γi

(
λi,n β̂

∗
i ,Bi

)
and

Bi =

(
η>i,n1n η>i,nZ λi,nη

>
i,nZ 0 0

0 0 0 Id1 λi,nId1

)
(1+d1)×(p−1)

.

Eq. 5 can be rewritten in matrix form as

v=Uθo +
ςT√
T

, [6]

where v= (v>1 , . . . , v>n )> with vi =Γi β̂
∗
i , U= (U>1 , . . . ,

U>n )>= (u1, . . . ,up), and ςT = (ς>1,T , . . . , ς>n,T )>.
Step 3.

3a. If U is of full rank, an estimate of θo is given by

θ̂EDLS = (U>U)−1U>v. [7]

3b. Assume that some elements of θo are zeros. An estimate
of θo can be obtained by the penalized model selection method

θ̂EDLS+ = arg min
θ

{
1

n(1 + d1)
‖v−Uθ‖2 +

p∑
j=1

pζ,γ(|θi |)

}
,

[8]

where ζ > 0, γ > 0, and the penalty function pζ,γ(|x |) satisfies the
following conditions:

pζ,γ(0) = 0, p′ζ,γ(x ) = 0 if x >γζ and p′ζ,γ(0) = ζ. [9]

The above conditions are satisfied by the following two penalty
functions among others. One is the smoothly clipped absolute
deviation (SCAD) penalty defined in ref. 14,

pζ,γ(x ) = ζxI[0, ζ](x ) +
γζx − 0.5(x2 + ζ2)

γ− 1
I(ζ, γζ](x )

+
ζ2(γ2− 1)

2(γ− 1)
I(γζ,∞)(x ), x ∈ [0, ∞),

and the other one is the minimax concave penalty (MCP) given
in ref. 15,

pζ,γ(x ) = ζx − x2

2γ
I[0, γζ](x ) +

1

2
γζ2I(γζ,∞)(x ), x ∈ [0, ∞).

Remark 1: Denote G= {j : θoj 6= 0, j = 1, . . . , p} and UG =

(uj , j ∈G), θoG = (θoj , j ∈G)>. If G is known and UG is of full
rank, θo can be estimated by θ̂

o
, the oracle estimator, such that

θ̂
o

G = (U>GUG)−1U>G v, and θ̂
o

j = 0 for j /∈G.

Theoretical Justification. Denote the smallest and largest eigen-
values of a matrix Ψ by λmin(Ψ) and λmax(Ψ), respectively.

Denote Πn = (η1,n , . . . ,ηn,n)n×n and

Ψt =


(Γ>1 )−1z∗1,t 0 · · · 0

0 (Γ>2 )−1z∗2,t · · · 0
...

...
. . .

...
0 0 · · · (Γ>n )−1z∗n,t


n(1+d1)×n

.

Define U∗i =Γi (λi,nβ
∗
i ,Bi), U∗=

(
(U∗1)>, . . . , (U∗n)>

)> =
(u∗1, . . . ,u∗p), and U∗G = (u∗j , j ∈G). We have the following
lemma, which is needed for proving Theorem 1.

Lemma 1. Assume that
√

n(1 + d1)/T→ c with 0≤ c<∞
and that there exist two positive definite matrices ΣG and
Σς such that (U∗G)>U∗G/(n(1 + d1))→p ΣG , (U∗G)>[∑T

t=1 ΨtΠ
>
n ΠnΨ

>
t /T

]
U∗G/[n(1 + d1)]→p Σς . If supi,n

|λi,n/(1− ρλi,n)|<w for some finite w > 0, and (1/n)∑n
i=1 λi,n/(1− ρλi,n)→mρ with |mρ|<w as n→∞, under

the assumptions of SI Appendix, Lemma S-1.1, we have that for
Σθ = Σ−1

G ΣςΣ
−1
G ,

1) if 1 /∈G,
√

n(1 + d1)T
(
θ̂
o

G −θoG
)
→ dN

(
0,σ2Σθ

)
;

2) if 1∈G,

Jin et al. PNAS | March 10, 2020 | vol. 117 | no. 10 | 5237

D
ow

nl
oa

de
d 

at
 P

al
es

tin
ia

n 
T

er
rit

or
y,

 o
cc

up
ie

d 
on

 D
ec

em
be

r 
27

, 2
02

1 

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1917411117/-/DCSupplemental


www.manaraa.com

√
n(1 + d1)T

(
θ̂
o

G −θoG
)
→ dN

(
cΣ−1
G
(
mρσ

2, 0
)>,σ2Σθ

)
.

Lemma 1 implies that the asymptotic bias tends to zero at
the rate O(1/T ) if 1∈G. It is noted that the asymptotic bias
of the MLE or GMM estimator of the autoregressive parameter
in the autoregressive panel data model with random effects tends
to zero at the same rate (theorem 1-3 of ref. 16) and so does the
asymptotic bias of the QML estimators of the SDPD model with
fixed effects (theorem 3 of ref. 9). The proof of Lemma 1 is given
in SI Appendix.

Even though θ̂EDLS+ is not unique in general, the following
theorem shows that the oracle estimator θ̂

o
is a solution of Eq. 8

in probability:

Theorem 1. Suppose that the conditions of Lemma 1 and conditions
in Eq. 9 hold. If ζ→ 0,

√
n(1 + d1)Tζ→∞, and min{|θoj |, j ∈

G}> c0 for a finite c0> 0, then θ̂
o

is a solution of Eq. 8 in
probability.

The proof of Theorem 1 is given in SI Appendix. Denote
Sn = 1

n(1+d1)
U>U and let %n be the smallest eigenvalue of

Sn . If %n + minu>0{p′′ζ,γ(u)}> 0, then Q(θ) = ‖v−Uθ‖2 +∑p
j=1 pζ,γ(|θi |) is strictly convex and hence θ̂EDLS+ is uniquely

characterized by the Karush–Kuhn–Tucker (KKT) conditions.
Note that %n = 0 if p>n(1 + d1). Thus under the condition
that p≤n(1 + d1), the following corollary is an immediate
consequence of Theorem 1:

Corollary 1. Suppose that the conditions of Theorem 1 are
satisfied. Assume that p≤n(1 + d1) and %n→ pc

∗, where
c∗>−minu>0 p

′′
ζ,γ(u) is a positive constant. Then

P(An)→ 1,P(θ̂EDLS+ 6= θ̂
o
|An)→ 0, as n→∞, T→∞,

where An = {%n + minu>0 p
′′
ζ,γ(u)> 0}.

By Corollary 1, the difference between θ̂EDLS+ and the ora-
cle least-squares estimator θ̂

o
tends to zero in probability, which

implies that the proposed EDLS+ procedure is consistent.

Data Examples
Simulations. Let A = (aij )n×n be an adjacency matrix
such that aii = 0, aij = aji , j 6= i . We generate aij , i > j ,
using Bernoulli distribution B(1, 10/n). We define the
weight matrix Wn =D−1A, where D = diag(

∑n
j=1 a1j ,∑n

j=1 a2j , . . . ,
∑n

j=1 anj ), and each row sum of Wn is scaled
to one.

In the model Eq. 1, let Z be an n × 2 matrix and Zt =
(yt−1,Xt ,Xt−1), where Z are generated from the mul-
tivariate normal distribution with zero mean vector and
covariance matrix I2, Xt is a n × 2 dimension matrix,
Xt are generated from the multivariate normal distribu-
tion with zero mean vector and covariance matrix given
by Σ0 = (cij )2×2 with cij = 0.5|i−j |, and the error terms εt
are iid from normal distribution N (0, 1) or t distribution
t(3). Denote θ= (ρ,α,γ>0 ,β>0 ,γ>,β>)>, whose true value
is θo = (0.2, 0.5, 0, 0,−1.5, 2.5, 0.3, 0, 0, 0, 0, 0.5,−1, 2, 0, 0)>16×1

Table 1. Performance of EDLS+ and the IV method for estimating θ

N(0,1) t(3)

Method (n, T) ρ MSE CR ICR ρ MSE CR ICR

EDLS+
Oracle (50,50) 0.205 0.037 8.000 0.000 0.200 0.039 8.000 0.000
LASSO 0.248 0.094 2.949 0.000 0.246 0.095 2.981 0.002
MCP 0.199 0.060 6.658 0.111 0.200 0.060 6.665 0.097
SCAD 0.198 0.060 6.711 0.112 0.198 0.060 6.693 0.102
OGA+ 0.142 0.099 7.945 0.395 0.146 0.094 7.943 0.369
Oracle (50,100) 0.203 0.018 8.000 0.000 0.200 0.018 8.000 0.000
LASSO 0.231 0.045 2.969 0.000 0.229 0.047 2.869 0.002
MCP 0.203 0.020 7.613 0.011 0.201 0.022 7.590 0.012
SCAD 0.204 0.020 7.603 0.010 0.201 0.022 7.582 0.013
OGA+ 0.202 0.021 7.967 0.022 0.199 0.022 7.961 0.030
Oracle (100,50) 0.210 0.019 8.000 0.000 0.207 0.019 8.000 0.000
LASSO 0.241 0.053 3.165 0.000 0.238 0.050 3.128 0.000
MCP 0.214 0.021 7.690 0.008 0.210 0.021 7.669 0.007
SCAD 0.214 0.021 7.687 0.008 0.210 0.021 7.669 0.007
OGA+ 0.213 0.021 7.985 0.013 0.208 0.022 7.981 0.021

IV
Oracle (50,50) 0.332 0.104 8.000 0.000 0.327 0.102 8.000 0.000
LASSO 0.379 0.231 3.126 0.001 0.374 0.227 3.091 0.005
MCP 0.377 0.236 7.208 0.429 0.367 0.217 7.107 0.374
SCAD 0.378 0.240 7.207 0.445 0.367 0.218 7.085 0.384
OGA+ 0.431 0.479 7.899 1.212 0.425 0.470 7.904 1.185
Oracle (50,100) 0.330 0.077 8.000 0.000 0.329 0.076 8.000 0.000
LASSO 0.370 0.157 2.951 0.000 0.368 0.155 2.894 0.001
MCP 0.335 0.083 7.414 0.001 0.335 0.084 7.382 0.005
SCAD 0.334 0.082 7.349 0.001 0.334 0.083 7.326 0.005
OGA+ 0.471 0.458 7.913 1.000 0.471 0.459 7.918 1.003
Oracle (100,50) 0.280 0.038 8.000 0.000 0.275 0.036 8.000 0.000
LASSO 0.317 0.097 3.241 0.000 0.312 0.093 3.136 0.002
MCP 0.285 0.041 7.744 0.000 0.280 0.040 7.770 0.003
SCAD 0.285 0.041 7.678 0.000 0.280 0.040 7.693 0.003
OGA+ 0.399 0.409 7.967 1.113 0.389 0.410 7.972 1.136
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Table 2. Time consumptions of EDLS+ and the IV method

EDLS+ IV

(n, T) (50,100) (100,50) (100,100) (100,200) (200,100) (50,100) (100,50) (100,100) (100,200) (200,100)

LASSO 0.036 0.071 0.071 0.076 0.177 0.520 0.515 2.072 9.198 9.847
MCP 0.069 0.105 0.122 0.135 0.211 0.554 0.547 2.090 9.084 9.802
SCAD 0.089 0.124 0.146 0.165 0.233 0.572 0.565 2.122 9.420 10.172
OGA+ 0.069 0.144 0.146 0.145 0.356 4.329 4.158 16.701 73.901 76.564

The entries are the average running times in seconds based on 100 Monte Carlo replications. All computations are performed on the same computer
[Intel(R) Core(TM) i7-8700 processor, 4.27 GHz, 12 M caches, 8 GB memory].

in which there are eight nonzero coefficients and G=
{1, 2, 5, 6, 7, 12, 13, 14}. The sample size (n,T ) is chosen respec-
tively as (50, 50), (50, 100), and (100, 50).

In addition to the EDLS+ using both SCAD and MCP
penalty functions, some other estimation methods are also con-
sidered for estimating θo , including the oracle estimator (as
G is known in simulations), the Least Absolute Shrinkage and
Selection Operator (LASSO) estimator (17), and the estima-
tor obtained by using the orthogonal greedy algorithm (OGA)
plus high-dimensional Hannan–Quinn criterion (HDHQ) plus
trimming (TRIM) (OGA+HDHQ+TRIM) (18) that is simpli-
fied as OGA+ in this paper. It is noted that OGA is a forward
stepwise regression method, HDHQ is used to choose a set
of regressors along the OGA path by minimizing HDHQ, and
TRIM is to exclude irrelevant variables. We select the tuning
parameters in the LASSO, SCAD, and MCP penalty functions
by the Bayesian information criterion (BIC).

We also compare the proposed procedure with the IV method,
which is a natural generalization of the method introduced in ref.
12 with T = 1,

θ̂IV = arg min
θ

1

nT

T∑
t=1

‖yt −Z∗t θ‖
2

+

p∑
j=0

pζ,γ(|θj |),

where Z∗t = (Ht(H>t Ht)
−1H>t Wnyt ,X

∗
t ),

Ht = Wn(I − ρ̂Wn)−1X∗t is an instrumental variable, X∗t =
(1n ,Z , WnZ ,Zt , WnZt), and ρ̂ is estimated by directly using the
least-squares method in the model Eq. 1.

We perform 1,000 Monte Carlo simulations. We report the
mean-squared errors (MSE), the average numbers of zero coef-
ficients which are correctly estimated to be zero (CR), and the
average numbers of nonzero coefficients that are erroneously set
to zero (ICR) for estimating θ, where the MSE is calculated
as MSE(θ̂) =

∑1,000
i=1 ‖θ̂i −θ

o‖
2
/1,000. The simulation results

are reported in Tables 1 and 2. We can see from Tables 1
and 2 that

1) EDLS+ outperforms the IV method;
2) EDLS+ is much faster than the IV method;
3) The larger the n and T , the better is the performance of all

of the methods; and
4) Neither the normal distribution nor the t distribution of the

random error has significantly influenced the performance of
both methods.

A Real Data Analysis. We go back to the example of model-
ing Part I offences based on urban crime count data discussed
in the beginning of this paper. The detailed logarithmic trans-
formations of Part I offences c

(1)
it and Part II offences c

(2)
it

in census tract i ∈ [1, 138] in month t ∈ [1, 72] are respectively
y
(j)
it = log(1 + c

(j)
it ), j = 1, 2. The time plot of the average ȳ

(j)
t =∑138

i=1 y
(j)
i,t /138 is shown in Fig. 3A. The partial autocorrelation

functions (PACF) of ȳ
(j)
t , j = 1, 2 are plotted in Fig. 3B. From

Fig. 3 A and B, we can assume that ȳ(1)
t has a period of 12 mo, and

ȳ
(1)
t at lag 1 is correlated with ȳ

(2)
t . In Fig. 3 C and D, we display
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Fig. 3. (A) Time plot of transformed Part I crimes (solid squares) and Part II crimes (open triangles) averaged across census tracts. (B) Partial autocorrelations
averaged across census tracts. (C) Time plot of Moran’s I (diamonds) and P value (solid line) for transformed Part I crimes. (D) Time plot of Moran’s I
(diamonds) and P value (solid line) for transformed Part II crimes. ACF, autocorrelation function.
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Table 3. Estimates of the regression coefficients by EDLS+

Without y(2)
t With y(2)

t

Regressors LASSO+ MCP SCAD OGA+ LASSO+ MCP SCAD OGA+

Wny(1)
t 1.68e-01** 2.71e-01*** 2.82e-01*** 5.84e-02*

y(1)
t−1 5.71e-01*** 5.81e-01*** 6.79e-01*** 6.59e-01*** 4.12e-01*** 4.22e-01*** 4.14e-01*** 4.48e-01***

Tp 1.47e-04*** 1.52e-04*** 9.02e-05*** 1.26e-04*** 4.44e-05*** 3.41e-05*** 4.37e-05***
Dp −8.26e-06* −9.86e-06* −5.53e-07 −5.83e-06* −2.94e-06 −5.69e-06
Mi −5.96e-07 −1.02e-06 . −1.01e-06 −1.94e-06*** −2.17e-06** −1.95e-06* −1.46e-06***
Gqp −5.64e-01*** −5.49e-01*** −4.25e-01***
Bdh 4.96e-01*** 5.47e-01*** 5.07e-01*** 6.38e-01***
Rhu 4.43e-01*** 4.68e-01*** 6.05e-01*** 1.77e-01** 1.85e-01***
Hvr 4.06e-01**
WnTp −8.32e-05** −1.01e-04*** −7.47e-05** −3.52e-05 . −4.38e-05* −3.52e-05.
WnDp 3.04e-06 3.20e-07 3.23e-06 8.34e-06 . 1.29e-05** 9.90e-06*
WnMi 2.93e-06* 9.77e-07 1.39e-06 4.27e-07 8.64e-07 6.21e-07
WnDra 2.74e-01***
WnGqp 3.58e-01* 5.57e-01**
WnBdh −3.50e-01*
WnRhu 8.14e-02
y(2)

t 3.68e-01*** 3.78e-01*** 3.67e-01*** 4.21e-01***
Wny(2)

t 5.85e-02** 3.98e-02*
cos( 2πt

12 )1n −6.61e-02*** −5.51e-02*** −8.10e-02*** −3.69e-02** −3.39e-02* −3.81e-02**
sin( 2πt

12 )1n −3.17e-02* −3.49e-02* −3.65e-02**
R2 0.9795 0.9789 0.9745 0.9762 0.9856 0.9853 0.9856 0.9842
σ 0.1455 0.1472 0.1614 0.1556 0.1087 0.1097 0.1088 0.1130
P value 0.0025 0.0026 0.0012 0.0012 0.2818 0.1228 0.1905 0.3945
AIC −1.3482 −1.3397 −1.2647 −1.2823 −1.4531 −1.4426 −1.4486 −1.4259
BIC −1.3372 −1.3309 −1.2589 −1.2779 −1.4436 −1.4337 −1.4390 −1.4229

Significance values: ***P = 0.001, **P = 0.01, *P = 0.05. P value is computed by a two-sided Kolmogorov–Smirnov test where null hypothesis is that the
residuals are normality.

Moran’s I statistics (19) and P values under the null hypothe-
sis of no spatial correlation between y

(1)
i,t and y

(2)
i,t at each time t ,

which are calculated using the spatial weight matrix Wn =D−1A,
where A = (aij ) is the queen contiguity matrix chosen by fol-
lowing ref. 1, and D = diag(

∑n
j=1 a1j ,

∑n
j=1 a2j , . . . ,

∑n
j=1 anj )

so that each row sum of Wn is scaled to one. By these two
plots, it can be seen that {y(1)

it } and {y(2)
it } are clearly spatially

correlated.
Denote y

(1)
t−1 = (y

(1)
1,t−1, . . . , y

(1)
138,t−1)> and y

(2)
t = (y

(2)
1,t , . . . ,

y
(2)
138,t)

>. To model y
(1)
t = (y

(1)
1,t , . . . , y

(1)
138,t)

> by a GSDPD
model, we let

Zt =
(
y
(1)
t−1,y

(2)
t , cos(2πt/12)1138×1, sin(2πt/12)1138×1

)
138×4

,

Z138×15 be the 15 socioeconomic variables over the 138 cen-
sus tracts and the weight matrix be Wn given above. As there

are 13 socioeconomic variables having a total of 83 missing val-
ues for 13 census tracts, we impute them by the medians of the
corresponding socioeconomic variables. Thus, for this GSDPD
model, d0 = 15, d1 = 4 so that the number of regression coeffi-
cients is equal to p = 2 + 2d0 + 2d1 = 40, which implies that it is
necessary to perform model selection for this model.

To find a strong confirmation of the “broken-windows” phe-
nomenon (20), we compare the differences in modeling of {y(1)

i,t }
without or with {y(2)

i,t }. For the former one, we accordingly
replace Zt by Z∗t by deleting the second column of Zt .

Since the bias in estimating θ by LASSO is large compared
to others, we modify this approach by first using LASSO for
performing model selection and then using OLS to estimate the
regression coefficients in the selected model, which we denote by
LASSO+. We report the modeling results by EDLS+ in Table 3.
In Table 3, it can be seen that in terms of R2, residual SE σ,
the P value of the Kolmogorov–Smirnov (KS) normality test,
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Fig. 4. (A–C) Residual analysis of LASSO+ with y(2)
t .
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the Akaike information criterion (AIC), and the BIC strongly
support including y

(2)
t , as it is shown to have a significant and

positive effect on y
(1)
t . From Table 3, it can also be observed that

the spatial lag also has a positive effect on y
(1)
t . All these obser-

vations are fully in accordance with the broken-windows theory
(20). In addition, Table 3 shows that LASSO+ with y

(2)
t per-

forms the best as it has not only the smallest residual SE σ, AIC,
and BIC values but also the largest R2. The residual analysis of
LASSO+ with y

(2)
t is displayed in Fig. 4, which indicates that the

distribution of residuals is approximately normally distributed.
A further examination of Table 3 shows that both cos

(
2πt
12

)
1n

and sin
(
2πt
12

)
1n are significant, which implies that y(1)

t is periodic
with a period of 12 mo. It can also be observed that the popula-

tion size (Tp) has a significantly positive effect on {y(1)
it } while

both population density per square mile (Pd) and median income
(Mi) have significantly negative effects on it. These results are
in agreement with those reported in the literature suggesting
that concentrations of violence typically occur in disadvantaged
communities and regions with a large population size (21, 22).
Finally, Table 3 reveals that the percentage of population with
a bachelor’s degree or higher (Bdh) has a significantly positive
effect on {y(1)

it }, which is in line with the result of ref. 1.
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